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This paper presents the experimental and theoretical results of applying resonant acoustic
spectroscopy~RAS! to determine elastic parameters and losses in such consolidated granular
materials as rock and building bricks. First, the theoretical aspects of the RAS method are outlined.
A computer code for the rectangular and cylindrical samples was developed and tested. The results
of experiments on specimens of rock and ceramic brick are then described. Finally, a modification
of the previously published RUS algorithm is presented which permits a significant reduction in
computing time for elongated samples. ©2001 Acoustical Society of America.
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I. INTRODUCTION

Among the fundamental characteristics of crystalli
and noncrystalline materials are their elastic consta
Knowledge of the elasticity tensor is very important, in p
ticular, for geophysical applications, where elastic consta
obtained from seismic data provide information abo
Earth’s interior structure.1 Elastic constants are determine
as derivatives of the free elastic energy with respect to
components of strain tensor. In the linear approximati
when the elastic energy is quadratic in strain, the numbe
independent elements of elastic tensorCi jkl is, in the general
case, 21. Symmetries of a specific crystal group~or crack/
pore distribution! further reduce the number of independe
constants~e.g., 2 for an isotropic medium, 3 for a cub
symmetry, 5 for hexagonal, and 6 for tetragonal!.

There exist various methods for measuring elastic c
stants. They are considered in detail, for example, in Ref
and 3. Until recently, most often used have been the meth
based on pulse propagation. However, along with an obv
simplicity, they have shortcomings associated with a re
tively low preciseness. In particular, errors are associa
with high-frequency sound scattering by grains in ro
samples.4 Another group is resonance methods based on
measurement of resonance frequencies of a sample an
inversion for its elastic parameters. Introduced as early as
1960s–70s, they have attracted a broad interest relati
recently, with the development of computer data process
These methods are known as resonant ultrasound spec
copy, RUS. The method was designed first for samples
spherical geometry.4 Later, with the advent of the numerica
solutions to inverse problems, it became possible to ana
resonant frequencies of a sample of arbitrary geometry
Ref. 3 it is stated that the RUS technique provides the hi
est accuracy for elastic moduli determination.
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A typical algorithm of RUS is based on the Lagrangi
approach: a basis of eigenfunctions is substituted into
grangian equations which leads to an eigenvalue probl
Since the infinite-dimensional eigenvalue problem cannot
solved in general, approximate variational methods such
the Rayleigh–Ritz algorithm are used which involve a fin
set of basis functions. Then, someM approximate eigenval-
ues and the corresponding eigenfunctions are obtained. I
series of basis functions is chosen properly, the lower eig
values can be calculated quite accurately. For rectang
samples, products of Legendre polynomials are typica
used as basis functions for displacement.

In later works, products of power functions were su
gested as a basis. Visscheret al.5 have pointed out that using
basis functions of the formxlymzn allows for a solution for
samples of several different shapes~shells, bells, cylinders,
eggs, potatoes, etc.!. This approach is known as the ‘‘algo
rithm of Ming/Migliori/Visscher.’’

The RUS analysis algorithm requires that RUS measu
ments determine the natural frequencies of a sample w
stress-free boundary conditions. Resonance oscillations
excited by one transducer. The second transducer meas
the amplitude and phase of the sample’s response. To ob
the desired accuracy, one must minimize sample loading
the transducers. Ohno6 proposed a method to control such
loading: a rectangular sample was supported by transdu
at its opposite corners. The corners were used for con
because the displacements have a maximum in these po
Unlike conventional ultrasonic pulse measurements wh
strong coupling between the transducer and the sampl
needed, the RUS method is attractive in that the sample
as a natural amplifier due to resonance with a gain equa
the quality factor, so that strong coupling with the source
not necessary.

In our study we used the RUS technique modified
110(4)/1770/8/$18.00 © 2001 Acoustical Society of America
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finding the complex elasticity tensor of large samples
structured materials such as rocks and ceramics. Becau
the relatively low frequency range, this method is free of
shortcomings of impulse measurements such as local sca
ing from local inhomogeneities, at least when the mac
scopic sample parameters are of interest, or the nondes
tive testing is being performed. We also suggest
modification of the RUS algorithm to significantly reduce t
computing time for prolate cylindrical bars often used
experiments. Due to the large size of the rock samples
contrast to most of RUS measurement in crystals, the
quency range for our measurements was between 1 an
kHz. Thus, instead of RUS~resonant ultrasound spectro
copy! we suggest the name RAS~resonant acoustic spectro
copy!.

A first application of resonant spectroscopy to ro
~granites! is described in the early work by Birch4 who used
a spherical sample and derived its elastic parameters. He
the present paper can be somewhat considered a dev
ment of Birch’s work with the use of more recent RUS a
gorithms, different materials and specimen shapes. The c
developed here is applicable for both rectangular and cy
drical sample geometries. Experimental verification of
code, including its modification for elongated samples, w
performed for rectangular parallelepipeds. Workability of t
modified code for thin cylindrical bars was tested by us
asymptotic analytical solutions.

II. BASIC RELATIONS FOR THE RAS METHOD

A. General consideration

As mentioned above, RAS analysis is based on the
of the variational principle and the Rayleigh–Ritz metho
i.e., an approximation of eigenvectors of variational eq
tions by a proper set of basis functions.3 We begin with out-
lining the direct problem: finding the resonance frequenc
Since the RUS algorithm is thoroughly described in, e
Ref. 3, here we omit all intermediate equations and conc
trate on main results on which our program has been ba
and then on the specifics of long samples~subsection E!. The
most usable sets of basis functions for a cylindrical sam
are products of exponents:5

Cn~x1 ,x2 ,x3!5S x1

R D n1S x2

R D n2S 2x3

H D n3

,

n5$n1 ,n2 ,n3%, ~1!

whereR andH are the radius and the length of the cylind
respectively. The basis Eq.~1! can also be used for the rec
angular parallelepiped shape~for the sake of brevity, we shal
occasionally refer to the latter as rectangular shape!. For the
analysis of our experiments with rectangular samples
shall use Legendre polynomials.3 @However, in the last sec
tion we shall use the representation Eq.~1! as well#:

Cn~x1 ,x2 ,x3!5Pn1S 2x1

L1
D Pn2S 2x2

L2
D Pn3S 2x3

L3
D ,

n5$n1 ,n2 ,n3%, ~2!

whereL j are sides of the parallelepiped.
J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001
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The displacement vectoru can be represented as a s
ries:

ui~x1 ,x2 ,x3!5ainCn~x1 ,x2 ,x3!. ~3!

The indexesn1 , n2 andn3 in Eq. ~1! are chosen to provide
integration inside the sphere

uku<K ~4!

in the wave number space. The value ofK can be evaluated
using a simple idea:K5max(v)/min(V), where max(v) is
maximal frequency to be determined and min(V) is minimal
phase velocity in the considered frequency range, minv)
<v<max(v). On the other side, the absolute value of wa
vector can be evaluated as (uku<K)

uku.pAS n1

L1
D 2

1S n2

L2
D 2

1S n3

L3
D 2

, ~5!

whereL j are characteristic dimensions of the sample. If t
number of frequencies which have wave vectors inside
sphere Eq.~4! is large enough and all sizesL are of the same
order, this coincides with the rule

n11n21n3<N, ~6!

proposed in Refs. 7 and 5 for a nearly cubic shape. HereN is
related to the number of resonance frequencies to be d
mined: (N11)(N12)(N13)/6.

As mentioned, the Lagrangian approach is typically us
for such problems. As the LagrangianL(ag) is stationary at
natural frequencies~ag are the complex amplitudes of eigen
modes!, all derivatives]L/]ag must be zero. As a result
resonance frequenciesvg can be determined as a solution f
the eigenvalue problem~the notation of Ref. 5 is used!:

v2Êikngakg5Ĝ ikngakg . ~7!

Here the ‘‘mass’’ matrixÊ for a homogeneous sample
defined as follows:

Êikng5rv2^CnuCg&d ik . ~8!

For a homogeneous sample, the ‘‘rigidity’’ matrixĜ can be
written in the following form:

Ĝ ikng5(
j ,l

3

Ci jkl bjl ~n1 ,n2 ,n3uñ1 ,ñ2 ,ñ3!. ~9!

The values of̂ CnuCg& andbjl related to the basis func
tions Cg are defined in the Appendix for both rectangul
and cylindrical geometries of a specimen.

As the tensorCi jkl is symmetrical,8 the matrixĜ is sym-
metrical too. Because the matrixÊ is positive definite, the
corresponding eigenvalues of Eq.~7! are real. Then, we can
use one of the standard methods to solve the problem in
~7! ~see, e.g., Ref. 9!.

In what follows we shall use this standard approach
our experiments with RAS of rectangular specimens.

B. Calculation of dissipative parameters

For the materials considered here, due to their comp
grainy structure, losses are a very important character
1771Ostrovsky et al.: Resonant acoustic spectroscopy for rock
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which can, in particular, prevent using high-frequency i
pulse methods of testing. Usually losses in solids are
scribed by small imaginary parts of elastic moduli. Such
description is valid for a wide range of frequencies10 and can
be invalid only for specific conditions, for example, whe
grain sizes are compatible with the length of the elas
waves. Therefore, the elastic moduli can be written as
lows ~the standard double-subscript notation is used belo8!:

Ckl2 iC̃kl5Ckl~12 ihkl!, ~10!

wherehkl are small dimensionless parameters represen
the internal friction normalized by the elastic constantsCkl .

In the paper in Ref. 11, a possible way to determ
dissipation parameters was proposed. The main idea of
paper is, in fact, the perturbation method: i.e., to use a R
solution for a medium without losses as a basic solution
then make corresponding adjustments. The resonance
quency of each mode is a function of the elastic moduliCkl ,
the size of the sampleL j , and the material densityr:

vn5vn~Ckl ,L j ,r!. ~11!

It is assumed that the functionsvn of all their arguments
in Eq. ~11! are regular. Using the Cauchy–Riemann con
tions for the complex functions Eq.~11!, written separately
for each variable, one immediately obtains~all derivatives
correspond toCkl

(0) that are the solutions of RUS proble
without losses!:12

Dvn5(
k,l

S ]vn

]Ckl
DCkl2

]ṽn

]Ckl
Ckl

(0)hklD ,

~12!

ṽn5(
k,l

S ]vn

]Ckl
Ckl

(0)hkl1
]ṽn

]Ckl
DCklD ,

whereDCkl are the adjustments of the real parts of elas
moduli due to losses,Dvn is the perturbation of annth reso-
nance frequency,ṽn5vn/2Qn , andQn is the Q-factor for
the frequencyvn . If Qn@1, all terms in the first equation o
Eqs. ~12! and, consequently,Dvn are of the second orde
with respect toṽn . Hence, the change of resonance frequ
cies due to losses can be neglected. Similarly, the last ter
the expression forṽn can also be omitted. As a result, th
loss factorshkl for the elastic moduli can be determined as
solution of a linear set of equations:

(
k,l

]vn

]Ckl
Ckl

(0)hkl5
vn

2Qn
. ~13!

For the overdetermined set of equations in Eq.~13!, hkl are
the medium parameters to be found. The measured valu
Eq. ~13! are resonance frequenciesvn and quality factors
Qn . From Eq.~13! one can also predictQn using the tensor
hkl .

C. Inverse problem

Equations~7! and ~13! allow one to solve a general d
rect problem of resonant acoustic spectroscopy for sam
with dissipation. To solve the inverse problem, one sho
start with a guessed set of elastic constants in the direct p
lem and then use an iteration procedure to find the se
1772 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001
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constants in question. Random errors can be reduced by
ing a larger number of measured frequencies and solvin
least squares problem. In general, numerous iteration a
rithms and fitting criteria can be used to find the best
proach for obtaining the values of the elastic constants w
the needed accuracy.13

The problem is commonly formulated as one of minim
zation of the mean-square-root difference between the m
sured and calculated resonance frequencies or, more exa
of the corresponding functional. The latter can be defined

«5A(
n51

N

~ f n2 f̆ n!2Y (
n51

N

~ f̆ n!2, ~14!

where f n are calculated frequencies depending on curr
values ofCi jkl ; subscript ‘‘n’’ denotes the number in the lis
of frequencies~in ascending order!; f̆ n are the corresponding
measured values of the frequencies. Experimental m
identification can be successfully used to eliminate ambi
ity and regular errors in the evaluation ofCi jkl .14 However,
such identification is a very complicated problem, and
did not use it here. In this paper we restricted ourselves to
use of Eq.~14! to define fit error in the inverse RAS prob
lem.

The problem of finding medium parameters which min
mize the difference between experimental data and calc
tions can be represented by a system of equations

dl~p!50, l 51,2,. . . ,n, ~15!

wherep5p1 , . . .pn is the vector of parameters to be dete
mined. In our case, functionsdl in Eq. ~15! are the differ-
encesf j

( i )2 f̆ j
( i ) . In terms of the extremal problem, the sy

tem Eq.~15! is equivalent to the problem of minimization o
the function:15

D~p1 ,p2 , . . . ,pn![(
l 51

n

udl~p1 ,p2 , . . . ,pn!u2, ~16!

or of any other monotonically increasing function ofudl u. In
particular, the value of« defined above can also be used
the functionD.

To solve the problem Eq.~16! by an iteration method,
one should start with some arbitrary valuespl

[0] . Then se-
quential approximations are created:

pl
[k11]5pl

[k]1dpl
[k] , ~17!

which should converge to the ‘‘exact’’ valuesp when k
→`.

To reduce the time of calculations, gradient schemes
usually used. In what follows we use Newton’s gradie
method. Namely, one finds sequential approximations
pl

[k] as the solution of a set of linear equations:

dl~p[k] !1(
j 51

n
]dl

]pj
U

p5p[k]

dpj
[k]50. ~18!

The convergence conditions for procedure Eq.~18! are de-
fined by the Kantorovich theorem.15

The number of measured and predicted~from the direct
problem! resonance frequencies is typically greater than
Ostrovsky et al.: Resonant acoustic spectroscopy for rock



s
d

e

e
le
du

ou
a
ha

m

’s
-
n-
n
e

r
y.

ef
tly

se
e
th
r

m
tu

a

a
th
er

ular
-

a

a-
es is
cy-
e

the
cer
en-
to
rge
ata
-
eter

as
pro-
han-
SP.

nd
al–
the
sen

h

ll. In
so-
e
e-
ale.
g on
the
for

r

ated

de-
ssor;
number of parameters to be determined. In this case the
lution of Eq. ~18! can be obtained as that of the correspon
ing least squares problem:

dp52~ÂTÂ!21ÂTd, ~19!

wheredp5p[k11]2p[k] , Â5(]dl /]pj ) , d is the vector of
functionsdl , and Â T is a transposed matrix. We shall us
this scheme in calculations presented below.

D. Test of the code

To verify the workability of our code we applied it to th
data given in the book3 ~page 112, data for steel samp
5120!. The corresponding parameters are: elastic mo
C1152.7372•1011Pa, C4458.9190•1010Pa, density r
57790 kg/m3 and sample size 3.04532.66532.645 mm3.
Data presented in Ref. 3 were obtained forN510 and the
inequality~6! was used. We used the same conditions in
calculations too. The difference in calculated frequencies
pears only in sixth digit. Thus our code works as well as t
of Ref. 3 for rectangular geometry.

To evaluate this code for cylindrical geometry, we co
pared its results with analytical models such as Pochgamm
Chree equation16 for compression modes and Timoshenko
equations for flexural modes.17 As is well known, these mod
els give a good approximation for long cylindrical bars. I
deed, as a cylinder becomes longer/thinner, the differe
between the corresponding asymptotic solutions and num
cal calculations becomes negligible~see Ref. 18!. Both in-
equalities~6! and~20! ~see the next subsection for the latte!
were tested to verify the code for the cylindrical geometr

E. Modification of RAS method for prolate specimens

To conclude the theoretical part, we suggest a us
modification of RAS that may enable one to significan
save computer time when prolate objects withL1@L2,3 ~such
as many borehole specimens! are tested. In this case, the u
of the condition Eq.~6! that actually supposes that the sam
order amount of modal numbers is used for all sides of
sample is excessive, and it is natural to accept the same o
of spatial scaleof the modes for each side to keep the sa
preciseness. For prolate samples we use the following na
restriction on numbersnj :

n1

L1
1

n2

L2
1

n3

L3
<

N

max~L j !
. ~20!

To obtain the same resolution in all directions, we keep
three terms in the left-hand part of Eq.~20! comparable in
order @this is actually the reason for using max(Lj) in the
right-hand side of that inequality#. As a result,n1,2!n3 , and
instead of a sphere in then-space it suffices to consider
prolate spheroid of a much smaller volume, practically wi
out an increase in error in comparison with the sph
Eq. ~6!.
J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001
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III. EXPERIMENTAL SETUP, DATA PROCESSING, AND
RESULTS OF MEASUREMENTS

A. Experimental design

The first tested specimen was a black rock of rectang
shape~from Zhitomir, Ukraine!. The sizes of the parallelepi
ped sides wereL15150.5 mm, L25114.2 mm, andL3

5102.8 mm; its mass wasM55.435 kg. The sample had
fine granular structure with no visible flaws.

The block-diagram of the experimental setup for me
suring the amplitude-frequency response of tested sampl
shown in Fig. 1. A function generator produced a frequen
modulated signal with the frequency swept linearly in tim
under computer control. After passing a power amplifier,
signal was applied to the transmitting acoustical transdu
which excited vibrations in the specimen. The receiving s
sor ~accelerometer! transformed the specimen vibrations in
an electrical signal which was then amplified by a cha
amplifier and forwarded to the first input channel of the d
acquisition board~ADC&DSP!. The transmitting and receiv
ing sensors were thin piezoelectric plates 16 mm in diam
and 2.5 g made of lead zirconate titanate. Epoxy glue w
used to attach them to the sample. The electrical signal
duced by a function generator was sent to the second c
nel. Both signals were used for signal processing by a D
The signal from the receiving acoustical sensor~accelerom-
eter!, after frequency conversion by a function generator a
subsequent narrow-band filtering, was recoded into re
imaginary form and sent to the hard disk together with
corresponding frequencies. The total sweep time was cho
according to theQ-factor values to record all peaks wit
high accuracy. TheQ-factors were about 103 for measured
modes so that all resonant peaks were resolved quite we
this case the positions of maximums coincide well with re
nance frequencies, and theQ-factor for each peak could b
defined from the peak width. In Fig. 2 the amplitud
frequency response of the rock is shown on a log-lin sc
To reduce the influence of supports, the sample was hun
thin threads. Simple evaluation of the resonances of
threads gives resonance frequencies of about 0.04 Hz
transverse~‘‘pendulumlike’’! motions and about 4 Hz fo
vertical oscillations~due to thread elasticity!. Also the effect
of transducer masses on resonance frequencies was estim

FIG. 1. Block-diagram of experimental setup for measuring the amplitu
frequency response of tested samples. DSP—digital signal proce
ADC—analog-to-digit converter.
1773Ostrovsky et al.: Resonant acoustic spectroscopy for rock
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to not exceed a fraction of a percent. Therefore, at the
quencies of 3 to 20 kHz used in the experiments, free bou
ary conditions can be considered as a good approximati

The second sample tested as an example of a buil
material was a standard ceramic brick of rectangular sh
having a lowerQ-factor ~that is closer to that of som
sandstone-type rocks!. The sizes of the parallelepiped we
L15250 mm, L25125 mm andL3585 mm; the mass wa
M55 kg. This sample had larger grains than the first o
also with no visible flaws.

To excite and measure all oscillation modes in the bri
we put five small sensors to positions shown in Fig. 3. B
cause of lower values of theQ-factor, several positions o
the emitter and receiver were used to resolve all reson
frequencies within the frequency band of interest. The th
and the fifth of the sensors were used to excite acoustic
brations in the brick and the others to receive them. T
transmitting and receiving sensors are piezoelectric pl
~20 mm in diameter and 1 mm thick! made of lead zirconate
titanate. Epoxy glue was used to attach them to the sam
Similarly to the first sample, the brick was hung on th
threads. For example, in Fig. 4 we show the amplitu
frequency response of the brick excited by the transmitte
position 5 and measured by the receiver in position 2~see
Fig. 3!.

Resonant frequencies and correspondingQ-factors were
associated with local maxima in the amplitude-frequency

FIG. 2. Amplitude-frequency response of the rock sample.

FIG. 3. Sensor positions for experiments with the brick.
1774 J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001
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sponse. We picked all local maxima in the amplitud
frequency response which exceeded the background leve
2–3 dB and more~as seen from Figs. 2 and 4, in most cas
this ratio was much larger!. To measure theQ-factors, we
used the vicinity of a resonance maximum and represen
this vicinity by a standard Lorentz shape. Taking advanta
of several transmitters and receivers, for each resonance
amplitude-frequency response was chosen which gives
largest signal/background ratio.

The corresponding frequencies andQ-factors of the vi-
brations in the samples were calculated according to
scheme described above. Tables I and II demonstrate th
sults for the rock sample. Tables III and IV demonstrate
results for the ceramic brick.

B. Elasticity and loss parameters of the tested
samples

A comparison of measured and calculated frequenc
and Q-factors for the rock sample is given in Table I. Th
mean-square-root difference between measured and c
lated frequencies is 0.17%. Such a small error can, at l
partly, be caused by the small lumped impedance of
piezo-ceramics transmitters. Indeed, their total mass was
proximately 5 g, while the specimen mass was slightly o
5 kg. According to the estimate, the maximal frequency s
due to the lumped impedance can reach 0.1%. We consid
this fit error as small enough, and no special procedures w
undertaken to reduce this effect.

The results of inverse RAS problem solution are sho
in Table II. To start the iterations for the elastic modulus,
performed special pulse-delay measurements for the c
pressional wave~the result isCl'6380 m/s!, whereas the
initial value of the Poisson ratio (n.0.1) was taken from
standard tables19 to define the shear modulus.

The sample has parameters which are rather close
basalt from the mantle top:20 C1150.81 to 1.04
31011N/m2, C445331010, Poisson ration50.23 and den-
sity r53300 kg/m3. This seems to agree with the fact th

FIG. 4. Amplitude-frequency response of the brick obtained for transmi
in position 5 and receiver in position 2.
Ostrovsky et al.: Resonant acoustic spectroscopy for rock
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the corresponding site lies on the Ukraine’s shield known
have reached a very shallow area.

For comparison we performed the same procedure s
posing that the specimen’s material is anisotropic with cu
symmetry. As there were noa priori data regarding symme
try axes, we aligned them along the specimen axes. F
Table II it is seen that error remains of the same order as
an isotropic sample model. As there is no evident phys
reason for any systematic anisotropy, it can be concluded
the sample is isotropic.

The values of theQ-factor have greater dispersion tha
those of resonance frequencies. This seems natural bec
the measuredQ is found from the widths of the correspond
ing resonance curves that are ‘‘contaminated’’ by neighb
ing resonances. Factors such as sound radiation into air

TABLE I. Calculated and measured frequencies andQ-factors for a rectan-
gular rock specimen of 150.53114.23102.8 mm3 having a 5.435 kg mass
and considered isotropic. The number of polynomials is limited byN513
with the constraint Eq.~6!. Q-factors were calculated from Eq.~13! after
finding theh’s.

#

Frequencies~kHz!
Error

%

Q-factors
Error

%Calc. Meas. Calc. Meas.

1 10.8051 10.8020 10.03 1304 1441 29.48
2 13.9212 13.9510 20.21 1221 1601 223.8
3 14.4560 14.4570 20.01 1215 1415 214.1
4 16.5271 16.4760 10.31 1303 1546 215.7
5 17.1951 17.2460 20.29 1292 1360 25.02
6 18.1429 18.1350 10.04 1261 1128 111.8
7 18.1692 18.1820 20.07 1291 1256 12.76
8 19.7260 19.6780 10.24 1265 1513 216.4
9 20.5777 20.6520 20.36 1162 1311 211.4

10 20.8999 20.9100 20.05 1270 1016 125.0
11 21.0045 21.0200 20.07 1265 1335 25.28
12 21.2718 21.2630 10.04 1281 1291 20.81
13 21.9518 21.8910 10.28 1285 1255 12.40
14 22.5604 22.5800 20.09 1218 1280 24.84
15 23.3352 23.3670 20.14 1292 1461 211.6
16 23.6955 23.7150 20.08 1193 1444 217.4
17 25.0200 25.0050 10.06 1226 1064 115.2
18 25.4484 25.4000 10.19 1149 934 123.0
19 25.6512 25.6350 10.06 1110 1188 26.53
20 26.0721 26.0650 10.03 1260 1145 110.0
21 26.4261 26.4430 20.06 1298 1243 14.42

TABLE II. The results of an inverse problem solution for the rock specim
Values ofdF anddQ were obtained as relative rms errors of the fits.DCi j

are errors which correspond to obtaineddF.

Isotropic specimen Cubic anisotropy

Cl ~m/s! 6366 6363
Ct ~m/s! 3592 3590a

n 0.27 —
C11 GPa 124.6•(120.0011i ) 124.5•(120.0011i )
C12 GPa 45.25•(120.0016i ) 45.06•(120.0017i )
C44 GPa 39.70•(120.0008i ) 39.66•(120.0008i )
dF ~%! 0.17 0.17
dQ ~%! 13.3 13.3

DC11 GPa 2.10 0.39
DC12 GPa 2.39 0.44
DC44 GPa 0.14 0.23

aAlong the main crystal axis ‘‘100.’’
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also be significant. A simple estimate shows that at the
quency of 10 KHz, the radiation alone limits theQ-factor by
a maximum of about 104. The corresponding error is com
parable with the values given in Table II.

The results of inverse RAS problem solution for th
brick are shown in Tables III and IV. One can see a go
correspondence between measured and calculated reso
frequencies. The errors inQ are larger in comparison with
the first sample. As the values of theQ-factor are typically
3–4 times less than those for the rock sample, these er
can be due to interference of neighboring resonances. S
ways to better resolve interferring resonances is the sub
of our present research.

Data in parentheses in Table IV correspond to the res

.

TABLE III. The results of an inverse problem solution for a ceramic bri
of 2503125385 mm3 size and 5 kg mass considered isotropic. ValuesdF
and dQ were obtained as relative rms errors of the fits.DCi j are errors
corresponding to obtaineddF.

Cl ~m/s! 3305.4
Ct ~m/s! 2155.1
n 0.13
C11 GPa 21.4•(120.0040i )
C44 GPa 9.11•(120.0036i )
dF ~%! 0.59
dQ ~%! 21.3

DC11 GPa 1.08
DC44 GPa 0.17

TABLE IV. Calculated and measured frequencies andQ-factors for a ce-
ramic brick considered isotropic. The order of the polynomials was limi
by N517 with the constraint Eqs.~6! and, for data in parentheses,~20!.

Frequencies~kHz!

# Calc. Meas.
Error

%

1 3.466 60~3.466 54! 3.466 30 10.01(10.01)
2 3.717 01~3.717 02! 3.732 80 20.42(20.42)
3 4.187 72~4.187 65! 4.209 40 20.51(20.52)
4 6.460 20~6.460 09! 6.439 70 10.32(10.32)
5 7.165 39~7.165 32! 7.138 00 10.38(10.38)
6 7.291 85~7.291 93! 7.309 40 20.24(20.24)
7 7.428 62~7.428 54! 7.409 80 10.25(10.25)
8 10.2172~10.2174! 10.2780 20.59(20.59)
9 10.4107~10.4108! 10.5400 21.23(21.23)

10 10.8838~10.8837! 10.7870 10.90(10.90)
11 10.9152~10.9151! 10.8540 10.56(10.56)

Q-factor

# Calc. Meas.
Error

%

1 1262.52(1262.53) 227.70 115.29(115.30)
2 1279.56(1279.55) 267.20 14.62(14.62)
3 1263.08(1263.09) 271.80 23.21(23.21)
4 1262.28(1262.29) 387.20 232.26(232.26)
5 1266.64(1266.64) 358.70 225.67(225.66)
6 1278.38(1278.37) 314.60 211.51(211.51)
7 1270.85(1270.85) 336.40 219.49(219.49)
8 1264.01(1264.02) 231.00 114.29(114.30)
9 1276.06(1276.06) 309.00 210.66(210.66)

10 1274.90(1274.89) 316.00 213.01(213.01)
11 1272.74(1272.74) 188.00 145.07(145.07)
1775Ostrovsky et al.: Resonant acoustic spectroscopy for rock
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of calculations according to the code modified for prola
samples. It is noteworthy that the use of the constraint
~20! instead of Eq.~6! enables us to reduce the time of ca
culations by a factor of 10 with practically the same acc
racy, even for the brick in which the ratio of different sid
does not exceed 3.

IV. CONCLUSIONS

This paper demonstrates that the method of reson
acoustic spectroscopy can be effectively applied to la
specimens of structurally inhomogeneous materials suc
rocks and ceramics. After Birch who also worked with lar
specimens, we utilized the more recently developed R
algorithms and applied them to large rectangular specim
Note that the numerical program created and used here
be applied to anisotropic samples as was demonstrated a
on a simple example of cubic symmetry. Also, a modificat
of the method significantly reducing the numerical time
prolate samples has been suggested and verified. We sup
that a further development will result in creating practic
tools for testing borehole samples and industrial materi
including those with defects.
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APPENDIX: MASS AND RIGIDITY MATRIX ELEMENTS

As both cylindrical bars and rectangular parallelepipe
are important from the point of view of their practical app
cation, both these cases are considered here.

Cylindrical shape:

^CnuCg&5P~n11ñ1 ,n21ñ2 ,n31ñ3!, ~A1!

where the functionsP(¯) are defined as

P~a1 ,a2 ,a3!55 2R2H

~a211!~a311!
•

GS a111

2 DGS a213

2 D
GS a11a2

2
12D

a1 ,a2 are even

0 otherwise,
~A2!

and G( . . . ) is the gamma function,R is the radius of a
cylinder andH is its length.

Values ofbi j (¯u¯) are defined as follows:

b115n1ñ1P~n11ñ122, n21ñ2 , n31ñ3!,

b125n1ñ2P~n11ñ121, n21ñ221, n31ñ3!,

b135n1ñ3P~n11ñ121, n21ñ2 , n31ñ321!,

b215n2ñ1P~n11ñ121, n21ñ221, n31ñ3!,

b225n2ñ2P~n11ñ1 , n21ñ222, n31ñ3!, ~A3!

b235n2ñ3P~n11ñ1 , n21ñ221, n31ñ321!,
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b315n3ñ1P~n11ñ121, n21ñ2 , n31ñ321!,

b325n3ñ2P~n11ñ121, n21ñ221, n31ñ3!,

b335n3ñ3P~n11ñ1 , n21ñ2 , n31ñ322!.

In the case ofrectangular shapeit is better to use a Legendr
polynomial expansion in the Ritz representation Eq.~3!. In
this case the values of interest are written as follows~L1 ,
L2 , L3 are sizes of a rectangular specimen!:

^CnuCg&5
L1L2L3dng

~2n111!~2n211!~2n311!
, ~A4!

and

b115
2dn2ñ2

dn3ñ3

~2n211!~2n311!

L2L3

L1
Gn1ñ1

,

b125
dn3ñ3

2n311
L3Fñ1n1

Fn2ñ2
,

b135
dn2ñ2

2n211
L2Fñ1n1

Fn3ñ3
,

b215
dn3ñ3

2n311
L3Fn1ñ1

Fñ2n2
,

b225
2dn1ñ1

dn3ñ3

~2n111!~2n311!

L1L3

L2
Gn2ñ2

, ~A5!

b235
dn1ñ1

2n111
L1Fñ2n2

Fn3ñ3
,

b315
dn2ñ2

2n211
L2Fn1ñ1

Fñ3n3
,

b325
dn1ñ1

2n111
L1Fn2ñ2

Fñ3n3
,

b335
2dn1ñ1

dn2ñ2

~2n111!~2n211!

L1L2

L3
Gn3ñ3

,

with

Fmn5H 2, n.m and n1m is odd,

0, otherwise,
~A6!

Gmn5H ~min~m,n!!•~min~m,n!11!, n1m is even,

0 otherwise.

1G. Mavko, T. Mukeji, and J. Dvorkin,The Rock Physics Handbook. Too
For Seismic Analysis in Porous Media~Cambridge University Press, Cam
bridge, MA, 1998!.

2J. E. White,Underground Sound, Application of Seismic Waves~Elsevier,
New York, 1983!.

3A. Migliori and J. L. Sarrao,Resonant Ultrasound Spectroscopy~Wiley,
New York, 1998!.

4F. Birch, ‘‘Velocity and attenuation from resonant vibrations of spheres
rock, glass, and steel,’’ J. Geophys. Res.80, 756–764~1975!.

5W. Visscher, A. Migliori, T. Bell, and R. Reinert, ‘‘On the normal mode
of free vibrations of inhomogeneous and anisotropic elastic objects,
Acoust. Soc. Am.90, 2154–2162~1991!.

6I. Ohno, ‘‘Free vibration of a rectangular parallelepiped crystal and
Ostrovsky et al.: Resonant acoustic spectroscopy for rock



rys

ta

,

on
lle

v-

d

al
ical
application to determination of elastic constants of orthorhombic c
tals,’’ J. Phys. Earth24, 355–379~1976!.

7H. Demarest, ‘‘Cube-resonance method to determine the elastic cons
of solids,’’ J. Acoust. Soc. Am.49, 768–775~1971!.

8L. D. Landau, E. M. Lifshitz, A. M. Kosevich, and L. P. Pitaevskii,Theory
of Elasticity ~Pergamon, New York, 1986!.

9J. H. Wilkinson and C. Reinsch,Handbook for Automatic Computation
Vol. 2, Linear Algebra~Springer-Verlag, New York, 1971!.

10A. D. Nashif, D. I. G. Johnes, and J. P. Henderson,Vibration Damping
~Wiley, New York, 1985!.

11Y. Sumino, I. Ohno, and M. Kumazawa, ‘‘Measurement of elastic c
stants and internal frictions on single-crystal MgO by rectangular para
epiped resonance,’’ J. Phys. Earth24, 263–273~1976!.

12B. V. Shabat,Introduction in Complex Analysis, Vol. 2, Functions of Se
eral Variables, 3rd edition@in Russian# ~Nauka, Moscow, 1985!.

13R. W. Hamming,Numerical Methods for Scientists and Engineers~Bell
J. Acoust. Soc. Am., Vol. 110, No. 4, October 2001
-

nts

-
l-

Telephone Laboratories, McGraw-Hill, New York, 1962!.
14J. Maynard, ‘‘Resonant ultrasound spectroscopy,’’ Phys. Today27, 26–32

~1996!.
15G. A. Korn and T. M. Korn,Mathematical Handbook for Scientists an

Engineers, 2nd ed.~McGraw-Hill, New York, 1968!.
16J. N. Sneddon and D. S. Berry,The Classical Theory of Elasticity

~Springer-Verlag, New York, 1958!.
17M. C. Junger and D. Feit,Sound, Structures and Their Interactions, 2nd

ed. ~MIT Press, Cambridge, MA, 1986!.
18A. V. Lebedev, L. A. Ostrovsky, I. A. Soustova, Calculation of natur

frequencies for a solid cylinder, Project No. F37750018-35, Techn
report 2.6.6, Institute of Applied Physics~Russia!—LANL ~USA!, 1998.

19Handbook of Physical Values, edited by acad. I. K. Kikoin~Atomizdat,
Moscow, 1976!.

20Encyclopedia Britannica, CD-version 1997, Tables 35, 36.
1777Ostrovsky et al.: Resonant acoustic spectroscopy for rock


